GENERALIZATION OF ONSAGER'S PRINCIPLE
AND ITS APPLICATION

I. M. Shter UDC 536.7

A principle is introduced to the thermodynamics of irreversible processes which general -
izes the well-known Onsager principle. On the basis of this principle, an equation of heat
conduction is derived with a finite velocity of heat propagation, and a system of equations
of coupled thermoelasticity is set up.

The theory of transfer processes embraces diverse phenomena: heat conduction, electric current
conduction, also diffusion and absorption of sound. Transfer occurs in systems which are not in a state of
thermodynamic equilibrium. The rate of a transfer process determines the change in the physical poten-
tial. The choice of potential is based on the following premise: if the location of extraneous bodies around
a system is fixed, then with time the physical system will eventually make a transition to equilibrium.

One of the basic principles in the thermodynamics of irreversible processes is Onsager's principle:
fluxes are linear functions of thermodynamic forces
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The matrix of the Ljk coefficients is symmetric, i.e., Lik = Lgj. The symmetry of this matrix is
a consequence of reversibility on the microscopic scale. An essential deficiency of this stated principle
and of the phenomenological laws derived therefrom is, in the author's view, that they ignore the history
prior to the action of thermodynamic forces, i.e., the inertial characteristics of the energy carriers.

This was pointed out first by Lykov [1, 2], who noted that the phenomenological coefficients in (1)
must not necessarily be considered constant in the case of transient transfer processes.

In order to remove the said deficiency, this author proposes to formulate Onsager's principle dif-
ferently: fluxes and thermodynamic forces are related as follows:
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where K(t—t'}) is the relaxation kernel. The matrix of the Lji coefficients is symmetric., Then the rate of
energy Increase can be expressed as

i
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If the relaxation kernel, equal to the é-function, is represented as K(t-—-t') = 6(t—t'), then (2) will yield
the well-known Onsager principle:
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K’(t—t'):fLexp(— t_t’), (4)
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with 7, denoting the relaxation time, then (2) yields

1
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where q; denotes the thermal flux and VT denotes the temperature gradient, From (5) we obtain the equa-
tion of heat transfer first derived by Lykov in [2]:
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Here Ag denotes the thermal conductivity. We will write Eq. (5) in a different form now:
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If the thermodynamic forces vary only slightly with time, then (7) may be expressed as
g; = LywT {1 — EXp (‘— ‘t‘—‘” (8)
lt K

or as the following expression for the thermal flux:

g; = l(.)VT[l—'eXP(*—Z*)} . (9
TI

When 8q/8t = 0, we have Fourier's law of heat conduction. Using (6), we can now derive the hyperbolic
equation of heat conduction:
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with the thermal diffusivity ¢ and with vy =+va /Tp. We will now derive, approximately, the equation of
heat transfer in form (5) for a neutral gas, based on the fundamental equation of kinetics: the Boltzmann
equation. The linearized Boltzmann equation for a neutral gas is

O yyf LIJ (11)
a VY 1 a |, :

Here f is the distribution finction of particles and [8f/0t], is the collision integral. The linearization is
effected by replacing the exact collision integral with

|ji\ . I=i (12)
Lot . T

where f, denotes the distribution function at equilibrium. Substitution (12) is obviously permissible, pro-
vided that the change in the energy of particles during collisions is small and that the collisions result in
a random distribution of velocities, We will express this distribution as follows:

f == f o wX (i‘, t_), <13)

]
where function X characterizes the deviation of the system from equilibrium and this deviation is assumed
small, Inserting (13) into (11), with (12) taken into accownt, yields

oX X
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In (14) we have disregarded the terms of second-order smallness with respect to X. As f, we adopt Max-
well's equilibrium distribution function

[ (- =) (15)
and have then
Vi, = s—%vin’!‘. (186)
Inserting (16) into (14) yields
' X ., X 3f, .
A= A8 ginT. 17
| de v tn

Having determined X from (17), we may now write for the distribution function

ofy, vinT exp (—t - t,\\ dt’.

t
f=1e+v j &7y e T _ (18)
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Let us next derive the distribution function for a neutral gas with a specified temperature gradient,
We calculate the thermal flux from the distribution finction {(18). We obtain

l .
= —Zn_3~ 5‘ evfd"v. (19)
We insert (18) into (19):
& : af, InT {—t
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and then have
t
g= |- vT exp{ — 1 dt’ —1—~ ‘vszvzrr —af—"— d®u. (21
T, Ty 4n® ) Ot
]

Integrating over the velocity space results in | svfod?’v =0 because, for a symmetric equilibrium func-
tion, to any value of +v there corresponds a value —v and the total integral vanishes. Expression (1/47°)

- | elviT,(8f,/8e)d®v represents the coefficient L,, so that (21) may be represented as

¢
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and
, 0q L,
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which corresponds to (5).

The equation of state for an elastic medium with small deformations is
ey 2u ,
O, = 2uly ~+ Mibyy + o [A T (T —Ty) 8. (23}

Here ok is the stress tensor; A and p are the Lamé constants; o denotes the linear thermal expansivity;
lik is the strain tensor; and j; is the first invariant of the strain tensor.
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The amount of heat absorbed in a unif volume is
dQ=CT+T, ( At —23&) i (24)

with Cq denoting the specific heat at constant strain. For the heat conduction process we have

%2— = —divg. (25)

On the basis of (6), one can obtain the general equation of heat conduction

7 2!'{‘
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Equation (26) together with the equation of motion

%u;

Y 27)

Oppp +Fi =0

form a system which describes the process of coupled thermoelasticity with a finite velocity of heat propa-~
gation. If the body forces, the surface forces, and the heat sources vary with time slowly, then one may
delete the inertia term from the equations of motion and theproblem of coupled thermoelasticity may be
considered quasistatic.

The fuindamental equations of quasistatic coupled thermoelasticity are

grad [(A + 2u) V*® — yT] = 0, (28)
1 oT 1 0T 0 >
.2T_._ﬁ_ ——— e e —— _______) 72(D —
VT e T e ( o | V=0 )

where ¥ = a7 (3A +2u); n =yT,/A@, and u = grad &, with & denoting the thermoelastic potential. It follows
from (28) that

VO —mT = g(1), (30)
where g(t) is an indeterminate function of time; m = y/(x + 2p) and g(0) = 0, g'(0) = 0.
We thus arrive at the following system of equations:
VO —mT = g (i),
N 1 ar 1 o7 [ 0 A
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If we stipulate transient boundary conditions
aT b
i = f ), —— = @ (f),
F» F) o ¢ () (32)

at the boundary S of some region, then system (31) can be reduced to two separate equations. Let us inte-
grate (31) over the volume of a body and then apply Green's identity, so that the equation of heat conduction
becomes

t

Vi — (\mn - —;—)( g; -, —g;z_) T=n [exp(— v?t)j'F(t')exp(u‘;’t') &' (@ — 1) — TIF(t)] , 33)
o]
where
9 g
F(t)y=VS {(1 — mu) (—at—+rr 2z )cp(z‘)—maf(t)] . 4

In (34) V denotes the volume and S denotes the surface of a body. It is evident, according to Eq. (33), that
we have obtained here an equation of heat conduction with a heat source whose intensity is a function of
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time, We may now write the following equation for the thermoelastic potential:

t i

VO = mT + 12 ”‘F(i’)dt’ —exp (—v¥) g F(t'Yexp (vit") dt’} . (35)

Ur |

0

Instead of system (31), we have obtained two separate equations (33) and (35). The coupledness of the
guasistatic thermoelasticity problem results, under transient boundary conditions, in the replacement of
coefficient 1/a by the coefficient [(1/a) + mn] in the equation of heat conduction with a concurrent appear-
ance of a heat source. This result confirms the necessity of considering thermoelasticity problems coupled
even in the quasistatic formulation.

NOTATION

J; is a flux;
Lik are the thermodynamic coefficients;
a is the rate of entropy increase;
t is the time;
vt  is the velocity of heat propagation;
T is the temperature;
€ is the energy;
v is the velocity of a particle;
Q is the amount of heat;
u is the displacement vector;
f is the density of the medium;
mn  is the coupling coefficient.
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